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THREE-DIMENSIONAL SIMULATION OF SPONTANEOUS RUPTURE:
THE EFFECT OF NONUNIFORM PRESTRESS

By STEVEN M. Day

ABSTRACT

We use a finite difference method to study crack propagation in a three-
dimensional continuum, for conditions of both uniform and nonuniform pre-
stress. The rupture criterion employed satisfies two fundamental physical re-
quirements: it ensures finite stresses in the continuum and finite energy dissi-
pation in crack extension. The finite stress numerical simulations exhibit abrupt
jumps in rupture velocity when sharp changes in prestress are encountered on
the crack plane, behavior analogous to that predicted theoretically for two-
dimensional, singular cracks. For uniform prestress conditions, the slip velocity
function is approximately a low-pass filtered version of that of a singular,
constant rupture velocity crack. For honuniform prestress, spatial variations of
peak slip velocity are strongly coupled to spatial variations of rupture velocity.

For uniform prestress and low cohesion, rupture velocity is predicted to
exceed the S-wave velocity in directions for which mode Il (inplane) crack motion
dominates. A subshear rupture velocity is predicted for directions of predomi-
nantly mode NI (antiplane) crack motion. Introduction of stress heterogeneities
is sufficient, in each of the three cases studied, to reduce average rupture
velocity to less than the S velocity, but local supershear rupture velocities can
still occur in regions of high prestress. Rupture models with significant segments
of supershear propagation velocities may be consistent with seismic data for
some large earthquakes, even where average rupture velocity can be reliably
determined to be subshear.

INTRODUCTION

It is generally assumed that earthquake ground motion results from unstable slip
accompanying a sudden drop in shear stress on a geologic fault. An important
theoretical tool for studying such ground motion has been the so-called “dislocation”
earthquake model. In this approach, the earthquake is represented in terms of the
displacement discontinuity, or “slip function,” on the fault plane. The form of the
slip function is generally chosen on an intuitive basis, without rigorous analysis of
the time-dependent stresses acting in the focal region.

In contrast to dislocation models, “dynamic” earthquake models are those which
take explicit account of the driving (tectonic) and resisting (frictional) stresses in
the source region, and derive the resulting slip via the equations of motion. Such
earthquake models generally lead to nonlinear, mixed boundary value problems
requiring numerical methods for their solution. The three-dimensional case, in
particular, presents formidable computational requirements.

In this study, we present numerical solutions for the rupture and slip histories
predicted by a dynamic earthquake model. We consider various conditions of both
uniform and nonuniform prestress. Our objective is to obtain an improved theoretical
understanding of potential rupture propagation effects on earthquake ground mo-
tion. The earthquake is modeled as a spontaneously propagating shear crack in a
three-dimensional continuum, with rupture growth governed by a slip-weakening
failure criterion. The equations of motion are solved by a finite difference method.,

A number of studies have treated the three-dimensional dynamic problem of a
propagating shear fault with the simplification that rupture velocity is specified a
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priori rather than being derived from a failure criterion. These results are reviewed
by Das (1981) and Day (1982).

Numerical solutions for fixed rupture velocity dynamic faults have satisfactorily
quantified some important three-dimensional geometrical effects such as the influ-
ence of fault width on the slip function. In the latter reference, for example, closed-
form approximations are developed for the dependence of final slip, slip rise time,
and slip velocity intensity (i.e., the strength of the crack-edge velocity singularity)
on fault width and length. By means of such relationships, the fixed rupture velocity
dynamic models help establish physical interpretations for the purely kinematic
parameters associated with the more routinely used dislocation earthquake models
(e.g., Swanger et al., 1980).

Madariaga’s (1977) analysis suggests that changes in rupture velocity of a propa-
gating fault are the predominant source of high-frequency radiation. To gain a
physical understanding of unsteady rupture propagation requires a “spontaneous
rupture” dynamic model. That is, a failure criterion must be introduced into the
numerical simulation so that rupture growth is determined as part of the dynamic
solution. Spontaneous rupture dynamic models have been studied in two dimensions,
using both analytical and numerical solutions. Freund (1979) provides a good review
of this work.

Three-dimensional solutions for spontaneous shear cracks are very limited in
number. Numerical solutions have been obtained by Day (1979), using the “slip-
weakening” failure criterion (Ida, 1972; Andrews, 1976a), and by Das (1981) and
Virieux and Madariaga (1982), using the “critical stress level” criterion (Das and
Aki, 1977).

In this paper, we first describe the conceptual and experimental bases for the slip-
weakening rupture model and point out some of the uncertainties involved in
applying the model to the scale of geologic faulting. In the subsequent section, we
apply the rupture model to obtain finite difference solutions for spontaneous rupture
in a uniformly prestressed whole-space. Then we turn to the effects of nonuniform
prestress. We study finite difference simulations for three particular problems. In
two cases, the prestress configuration consists of a single, isolated concentration of
high stress on the fault plane. The third case consists of five separate stress
concentrations, with intervening lower stress areas.

Our focus in the present paper is on the rupture process itself, particularly the
dependence of rupture velocity and slip velocity, respectively, on prestress and fault
strength. Our intent is to identify specific phenomena associated with rupture
propagation which may be important for defining the seismic radiation. We delib-
erately treat problems involving only simple geometries, and make no effort to
simulate the full range of complexity which might be present in the earth.

An important further step will be to determine how the rupture phenomena
identified in this study would be manifested in the radiated seismic signal. The slip
histories obtained from the numerical solutions presented here are sufficient to
synthesize the radiated wave field, and this issue will be considered in a subsequent
report.

FaurLT MODEL

The model of faulting employed here follows that described by Day (1982),
except that rupture is spontaneous, not prescribed a priori as in that study. In
particular, we retain the approximation that faulting is confined to a single plane
and that the continuum is linearly elastic everywhere outside that plane. In this
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model, any inelastic response of the fault zone must be approximated through a
(nonlinear) boundary condition on the fault plane. We will use the terms “failure”
and “rupture” interchangeably to denote loss of strength of the fault zone, without
prejudice as to whether the actual process of faulting in the earth more nearly
resembles frictional sliding on a discrete fault plane or fracture of intact rock.

When an abrupt stress drop is imposed on a crack in an otherwise linearly elastic
continuum, the stress at the crack edge is singular. As pointed out by Andrews
(1976a), this is true even though, in special cases, the traction acting on the crack
plane may itself be nonsingular. The basic assumption guiding our construction of
a failure criterion is that material strength is finite so that shear stress concentrations
near the crack edges must be bounded by some prescribed yield stress. As noted by
Andrews, bounded stress must be accompanied by energy absorption at the rupture
front as rupture extends.

One way to avoid the stress singularity is to posit a “cohesive zone” just ahead of
the crack edge in which slip is resisted by some distribution of cohesive tractions.
Ida (1972) introduced the slip-weakening shear-crack model, in which the cohesive
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F1e. 1. Sketch of the slip-weakening model. The curve represents the shear stress level on the fauit
required to sustain sliding, as a function of the slip path length,

traction is assumed to depend only on the amount of slip across the crack. Ida
analyzed the steady-state problem of a propagating, antiplane shear crack, for
various functional forms of slip weakening. It was demonstrated that this model is
equivalent to the Griffith criterion in its prediction of rupture growth provided the
zone over which the cohesive tractions act is small compared with the overall crack
dimension. The specific fracture energy of the Griffith criterion was identified with
the work done by the cohesive traction.

dimensions. The shear traction vector 7 on the fault plane is limited in magnitude
by a finite yield stress, Tu, Which is greater than, or equal to, the initial equilibrium
value of traction, 7,. Slip commences at a point when necessary to prevent the
magnitude of 7 from exceeding 7,. This relative displacement is denoted s, and has
a path length denoted by 4, where s is given in differential form by ds® = ds . ds.
The slip is assumed to weaken the fault plane at that point, reducing the shear
traction required to sustain sliding by an amount proportional to 4. Finally, when s
reaches a critical value, do, cohesion is considered to be destroyed, and further
sliding occurs at a specified “dynamic friction” level, 7;.
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We will define the dynamic stress drop, Ar, to be the difference between the
absolute values of shear prestress and sliding frictional stress,

Ar =19 — 14, (1)

A second important quantity is a dimensionless ratio which Das and Aki (1977) call
S, and which is a measure of how near the initial stress field is to failure. This ratio
is defined by
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FiG. 2. Laboratory measurements of fault shear stresses and relative displacements, versus time, for
an unstable slip event in granite (from Dieterich, 1980).

and S + 1 represents the stress change which occurs across the rupture front,
normalized to the dynamic stress drop.

This failure model satisfies the requirement that stress be everywhere finite. The
energy dissipated in overcoming cohesion, per unit area encompassed by extension
of the rupture, is denoted by 2y. It is given by

2‘Y = % do(‘Tu - 'Tf). (3)

and y can be interpreted as a specific fracture energy.

Laboratory measurements of rock friction show slip-weakening behavior of this
type. Dieterich et al. (1978) and Dieterich (1980) have measured time histories of
shear stress and slip during unstable slip events induced on lapped sawcuts in large
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proceed on the hypothesis that unstable frictional sliding, in turn, is a useful analog
for natural earthquakes with source dimensions of the order of hundreds to thou-
sands of meters.

From Dieterich’s data, reproduced in Figure 2, we can infer a representative valye
of S. This ratio lies in the range 0.0 to 0.5 for the five stress recordings shown, S1
through S5. In our numerical experiments with uniform Prestress, we will examine

Dimensionless Distance X’
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F16. 3. Rupture front contours, at unit intervals of the dimensionless time, for the case of uniform
prestress. The two cases represent numerical simulations performed for S = 0.2 and S = 0.5, respectively.

rupture propagation for two values of S in this range, S = 0.2 and S = 0.5, We
cannot be sure, of course, that these values are representative of actual earthquake
faulting. In fact, the numerical results in' the next section suggest that, on the
average, cohesive stresses are probably somewhat larger than implied by these
values of S.

We will also need an estimate for the fractional stress drop, Ar/7. Laboratory
stick-slip experiments in rock give values of Ar/7, of a few per cent to a few tens of
per cent (e.g., Byerlee, 1967; Scholz et al., 1972; Dieterich et al., 1978). In our
numerical simulations with uniform prestress, At/7, will be set to 0.1. Actually, for
a given value of Ar, the value of A7/7o has very little effect on the dynamic solution;
it influences principally the amount of slip which occurs in the direction perpendic-
ular to the prestress direction, and this slip component is usually small in any case.
The main importance of estimating Ar/7o, in the context of the slip-weakening
model, is to guide our estimation of do.

Laboratory results give us few guidelines from which to estimate do, apart from
the qualitative one that d, may be substantially larger for geologic faults than for
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laboratory faults since it appears to increase with surface roughness and gouge
particle size (Dieterich, 1981). The numerical solutions for uniform stress will be
nondimensionalized with respect to do. In the nonuniform stress simulations, how-
ever, we introduce a length scale into the problem; so we will have to assign
numerical values to do. For the reason discussed below, we will use values of do
several orders of magnitude larger than the laboratory values, which range from
roughly 2 X 107° to 2 X 10™* m (Dieterich, 1980).

If we are to retain the analogy to frictional sliding, relatively large values of do
appear to be required to prevent those stress components not relieved by slip on the
fault from exceeding the failure stress. To see this, we perform a calculation similar
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Fic. 4. Rupture velocity as a function of dimensionless distance, for the case of uniform prestress.
The solutions are shown along both the x axis (prestress direction) and the y axis. Numerical solutions
are given for two finite values of the strength parameter S. Also shown is the analytic solution for the
onset of spontaneous rupture in the singular case (S = ).

to one done by Andrews (1976a). For mode III (antiplane strain) crack propagation,
in which the shear stress component 7,, is relieved on the plane y = zero, Ida and
Aki (1972) give the following expression for the unrelieved component of shear stress
ony= 0, Txz

o b
2ur’

(4)

Txz

where p is the shear modulus, vr is the rupture velocity, and § is the slip rate. Ida
(1972) obtained a numerical estimate of the peak value of § for an antiplane crack

in which 7,. is limited by the slip-weakening criterion. His result can be written as
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where V is the slip velocity intensity for the so-called “macroscopic,” or “large-
scale” solution. That is, V characterizes the crack-tip velocity for the corresponding
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. F1c. 5. Slip velocity time histories for several points along the x and y axes, for the numerical
simulations with uniform prestress. The time histories have been low-pass filtered, with a nondimensional
cutoff period of 0.6.

singular crack problem, and is defined by
s’ ~ V£—1/2’

where ¢ is distance behind the crack tip, and £ is small compared to the overall crack
length, but still exceeds the length over which the cohesive stresses act.

Although equations (4) and (5) were derived for the antiplane problem, we will
assume that they also provide a rough estimate of maximum shear stress in the



1888 STEVEN M. DAY

general case of a shear crack in three dimensions. Day (1982) determined V
numerically for propagating rectangular shear cracks in three dimensions, and found
that Vis limited by the narrow dimension of the crack, W. Using his approximation
for V,

together with equations (4) and (5), we find, very approximately,

WAr?

Maximum shear stress =
pdo

Therefore, to ensure that the maximum shear stress does not exceed 7., it is
adequate that ds obey approximately

WA+?

_ 6

do > wdo Toe (6)
TABLE 1

FAULT PARAMETERS FOR NONUNIFORM PRESTRESS
SIMULATIONS

Problem do l Ty T Max 7o Min 1y
No. (m) (MPa) (MPa) (MPa) (MPa)

I 0.10 102 20 100 90.0

I 0.10 102 90 100 92.5
11 0.08 102 90 100 92,5

For example, for a fault width of 4 km, a dynamic stress drop of 10 MPa (100 bars),
shear modulus of 3.2 X 10* MPa, S of 0.5, and fractional stress drop equal to 0.1, the
inequality (6) is satisfied for dy of about 0.12 m or greater. This set of parameters
would imply a fracture energy y of about 4.5 X 10° Jm™2, which happens to be very
close to Aki’s (1979) estimate of 4 X 10° Jm™® for the specific fracture energy
associated with stopping of rupture during the 1966 Parkfield earthquake.

The above considerations should roughly apply even if we acknowledge that
failure is probably not strictly confined to a plane. Then, the interpretation would
be that large values of dy are necessary in order for the specific fracture energy
(which is proportional to do in our model) to adequately simulate energy loss
through inelastic work in the continuum. It is obvious, however, that considerable
uncertainty exists, both as to the numerical value and physical interpretation of the
model parameter dp.

UNIFORMLY PRESTRESSED FAULT

Problem description. We use the slip-weakening model to simulate spontaneous
rupture in a uniform whole-space. The fault occupies the plane z = 0 and relieves
the xz component of stress. Rupture starts at the origin and grows outward, and the
fault slip is symmetric about both the x and y axes. The prestress, o, strength, 7.,
frictional stress, 7/, and the critical slip, do, are all constant on the plane z = 0. The
continuum is a Poisson solid; i.e., the ratio of the P-wave speed, a, to the S-wave
speed, B, |equals V3. The fractional stress drop, At/7e, is 0.1, although variations of



THREE-DIMENSIONAL SIMULATION OF SPONTANEOUS RUPTURE 1889

A7/70 would have very little effect on the numerical solutions. We will consider two
values of S, S = 0.2 and S = 0.5.

The relevant boundary value problems are solved using a three-dimensional finite
difference method. The dynamic solution is explicitly time-stepped, and artificial
viscosity is used to suppress any high-frequency oscillations in the solution caused
by the numerical dispersion which is intrinsic to discrete numerical methods such as
finite difference. As a further precaution, the slip velocity time histories are post-
processed with a low-pass filter to remove any significantly dispersed high-frequency
components of the solution.

Rupture inception. Once started in a uniform stress field, rupture proceeds
spontaneously, without stopping, driven by the dynamic stress concentration at the
fault edges. However, some additional mechanism is required to initiate rupture
from the equilibrium prestress configuration. We might imagine, e.g., that a rela-
tively small area on the prospective fault plane has been weakened, and that the

Y

FiG. 6. Fault geometry for nonuniform prestress problem 1.

shear stress there falls from 7, to 77. This initial crack then slides stably under a
slowly increasing tectonic load. Eventually, a situation develops which is analogous
to the critical crack in elastic fracture mechanics, and accelerating crack growth
ensues.

Our interest will be confined to the dynamics of faulting after the onset of
instability, and we will not concern ourselves here with the quasi-static processes
leading to instability. Instead, we will simply induce an instability artificially, as
described later. However, in order to establish a fundamental length scale for the
dynamic solution, it is useful to estimate the size of a critical static crack. For this
purpose, we assume that the crack is initially circular. We further assume (only for
the present purpose, however) that, at the onset of instability, the circular crack
initially expands uniformly, retaining circular shape. To estimate the critical radius,
re, we seek a balance between strain energy release rate and the energy dissipation
rate at the crack edge, per unit increase in the crack radius. We start with Neuber’s
(1937) solution for the static slip on a circular shear crack in a Poisson solid

24 At r
Sw(r)=ﬁ'ﬂ—rc\[1—"—%, )
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where s, is the static slip, p is the shear modulus, 8 is the shear wave speed, r. is the
crack radius, and r is the distance from the crack center. The total “available”
energy, E, is defined as the drop in strain energy due to crack formation minus the
work done against friction, and can be calculated from equation (7)

Artrd
E=87T” . (8)

The slip-weakening mechanism dissipates energy X at the rupture front at the rate

dz =q(S+1) dorAr (9)

dr.
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n
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. F1e. 7. Rupture front contours obtained from the numerical solution to problem I. The rupture front
is shown at 0.3-sec intervals. The fault stops spontaneously after 1.5 sec.

per unit increase in crack radius. The desired estimate of the critical radius is r.
such that E-X is stationary, which gives

Tru(S+1) d,
re= N A . (10)
For our dynamic simulations, we have induced an instability through the artifice
of enforcing, within the focal region, a minimum rupture velocity equal to half the
shear speed B (Andrews, 1976b, used a similar method to start plane-strain shear
cracks). The choice of this value for minimum rupture velocity is a compromise
between approximating quasi-static crack inception (favored by rupture velocity
approaching zero) and reducing computation time (favored by a high minimum
rupture velocity).
Numerical results for rupture velocity. Because of the spatial uniformity of the
problem, there is no intrinsic length scale apart from the critical crack radius
[equation (10)]. We will present the numerical results in nondimensional form using
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r. as the fundamental length unit. Since the derivation of 7. is approximate, however,
17
24
t, respectively, are given in terms of the nondimensional variables, x" and ¢, by

x=(S+1)p.dox,

we will ignore the numerical factor — in equation (10). Then, distance x and time
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F1c. 8. Rupture velocity and peak slip velocity for problem I, as functions of position along the x axis.
Peak slip velocity is obtained from low-pass filtered (5-Hz cutoff) time histories of slip. The S-wave
velocity is shown by a horizontal line, indicating that the local rupture velocity is slightly supershear near
the edge of the stress concentration.

Figure 3 shows contours of the rupture front at equal intervals of dimensionless
time, ¢, for the two values of S. The rupture front is defined to enclose regions of
the fault plane on which the slip has exceeded do. For both values of S, rupture
propagation is most rapid in the direction of prestress, the x direction, and is least
rapid in the y direction; this leads to roughly elliptical rupture fronts. The figure
indicates that rupture acceleration is less rapid for the higher strength case, S = 0.5,
than for S = 0.2.

Figure 4 shows rupture velocities obtained from the numerical solutions along the
two principal directions. The velocities are shown as functions of hypocentral
distance, for both values of S. The initial, flat parts of the curves represent the
minimum rupture velocity, 0.5 8. As the minimum is exceeded, rapid acceleration of
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the rupture front occurs. This begins on the x axis (prestress direction) at dimen-
sionless distance of about 0.7, and begins at a slightly greater distance along the y
axis.

In the y direction, the rupture velocity smoothly approaches the shear wave
velocity; for S = 0.2, the rupture velocity reaches 0.95 B by the time the fault has
propagated a dimensionless distance of about five. Increasing the strength increases
the distance at which a given rupture velocity is achieved, as shown by the curve for
S =0.5.

In the x direction, acceleration is more rapid than in the y direction; for S = 0.2,
the rupture reaches the shear wave velocity at x’ = 1.5. For S = 0.5, the shear wave
velocity is reached at x” = 3.0. The rupture velocity then levels off somewhat, before
accelerating rapidly again toward the P-wave velocity, a. For S = 0.2, the rupture
velocity reaches 0.9 « at x’ = 3.5. The leveling off of the rupture velocity near the
shear wave velocity is more pronounced for S = 0.5, and the acceleration toward the
P velocity occurs at greater distance.

Y

F1c. 9. Fault geometry for nonuniform prestress, problem I1.

Also indicated in Figure 4 are the distances along the x and y axes, respectively,
at which a singular crack (i.e., the case S = «), driven at v = 0.5 B, first begins to
accelerate spontaneously. These values are obtained analytically, using standard
results for the energy release rate, G, at the edge of a circular crack growing at
constant velocity (e.g., Richards, 1976). The energy release rate is a known function
of crack radius, rupture velocity, and position on the rupture front; we simply equate
G to twice the specific fracture energy, set the rupture velocity to 0.5 8, and solve
for crack radius. As was the case for the two numerical solutions for finite S, the
singular rupture front begins accelerating first along the x axis (the prestress
direction), and last along the y axis.

Once the crack starts accelerating, the analytic results for S = « no longer apply.
The dotted lines suggest the expected behavior of the singular crack, based on the
approximation of using the self-similar circular crack solution for G after the onset
of accelerating rupture.

The most important aspect of Figures 3 and 4 is the prediction of rupture velocities
exceeding the shear wave velocity for propagation in the direction of mode II crack
extension (x axis). On the other hand, rupture remains subshear in the direction of
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purely mode III crack propagation (the y direction). Das (1981) has obtained similar
results using the critical stress level criterion of failure.

The result that the mode III rupture is subshear, but approaches the S-wave
velocity asymptotically, agrees with two-dimensional analytical solutions for mode
III cracks (e.g., Kostrov, 1966). The prediction of supershear rupture in the direction
of prestress, for both S = 0.2 and S = 0.5, is in agreement with Burridge’s (1973)
two-dimensional analysis of mode II rupture propagation for a finite stress rupture
criterion. The two-dimensional numerical solutions of Das and Aki (1977) and
Andrews (1976b) also yield supershear rupture velocities for values of S similar to
those used here. Those studies have established, however, that for values of S
exceeding approximately 1.63, mode II rupture propagation is subshear. This result
is expected to govern the three-dimensional solution, as well; so for substantially
higher fault strength relative to A, rupture velocity is expected to be subshear in all
directions.

al 4

0 I 2 3 4
X (km)

F1G. 10. Rupture front contours obtained from the numerical solution to problem II, shown at 0.3-sec
intervals. Fault growth stops spontaneously at approximately 2.1 sec.

Earlier, we discussed some observations made by Dieterich of unstable slip events
in granite blocks with dimensions of the order of 1 m. Typical fault parameters
observed in these experiments are (see Figure 2) Ar = 0.2 MPa, S = 0.5, and d, ~ 3
X 107 m. Then, assuming I = 3 X 10* MPa for granite, we find that a hypocentral
distance of 1 m corresponds to a dimensionless distance x’ of about 1.5. From Figure
4, we see that this is well within the range of subshear rupture velocity for S = 0.5.
Thus, the numerical solutions indicate that rupture velocities will usually be sub-
shear for similar experiments on this scale. This prediction is sensitive to the value
of S, however; for S = 0.2, e.g., a 1-m distance corresponds to x’ = 1.8, which,
according to Figure 4, is close to the distance for transition to supershear rupture,
for this value of S. It is conceivable, then, that rupture velocity measurements on
this length scale will occasionally exceed B, for similarly prepared fault surfaces,

Numerical results for slip velocity. Normalized slip velocities along the x and y
axes are shown in Figure 5. These have been low-pass filtered to attenuate Fourier
components with (nondimensional) periods shorter than about 0.6, The figure shows
that the peak (low-passed) slip velocity increases with focal distance. The increase
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appears to be similar in form to the Jr increase found analytically for circular, fixed
rupture velocity models (Kostrov, 1964). Peak slip velocity, at a given focal distance,
is higher on the y axis than on the x axis. This azimuthal variation is qualitatively
explained by the Burridge and Willis (1969) solution for the slip s on a self-similar,
expanding elliptical crack

3
S=Cﬂ< —ﬁz—£2> H( —£—£> SR )
® Ux Vy v

where C is a constant and v, and v, are the rupture velocities in the x and y
directions, respectively. This expression predicts that peak (low-passed) slip velocity,
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Fic. 11. Rupture velocity and peak slip velocity for problem II, as functions of position along thé x
axis. Peak slip velocity is obtained from low-passed (5-Hz cutoff) time histories. o

on the y axis will approach (v:/v,)? times the peak slip velocity at the same focal
distance on the x axis. At ¥’ = 5.7, this accounts for about half the observed
difference in peak velocity between the two azimuths. The discrepancy is not
surprising, considering that equation (12) strictly applies only to singular cracks and
for constant rupture velocities, with v, less than the Rayleigh wave velocity and v,
less than the shear velocity.

The overall shapes of the slip velocity curves are similar to those for the self-
similar solution [equation (12)]. That is, they are roughly low-pass filtered, square
root singularities. In fact, the peak slip velocities in Figure 5 are very close to what
one would predict from low-pass filtering the self-similar solution (which has singular
stress) using the same short-period cutoff that was applied to our numerical
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solutions. The finite stress condition incorporated into the numerical solution
apparently does not substantially reduce peak velocity, relative to singular-stress
crack solutions, within the frequency band preserved by the present numerical
solutions. Scaled to Ar = 10 MPa, p = 3.24 x 10* MPa, B = 3.46 km/sec, and S+
1)do = 0.12 m, the upper frequency cutoff for these calculations would correspond to
about 15 Hz, and the maximum hypocentral distance represented in Figure 5 would
correspond to about 2.25 km.

These results show that the expression (r, — 77) 8/u does not necessarily provide
a good estimate of peak slip velocity, as has been hypothesized previously (e.g., Del
Mar Technical Associates, 1978). Figure 5 shows peak slip velocities as high as five
times this estimate, and these must be interpreted as lower bounds since the
computed velocities have been low-pass filtered.

Fic. 12. Fault geometry for nonuniform prestress, problem III.

FaurLts witHh NONUNIFORM PRESTRESs

Introduction. There is growing evidence that spatially inhomogeneous stress
changes are a prevalent feature of shallow-focus earthquakes (e.g., Hanks, 1974;
Kanamori and Stewart, 1978; Hartzell and Brune, 1979; Bache et al., 1980). Such
variations in stress drop, plus the likely variability of frictional strength along faults,
may be expected to give rise to irregularities in rupture velocity. Madariaga’s (1977)
analysis suggests that such rupture velocity variations may be the predominant
source of high-frequency radiation from propagating faults. Clearly, it is important
to improve our understanding of rupture propagation and its relationship to non-
uniformities in the stress field.

In this section, we describe numerical simulations of spontaneous rupture propa-
gation in the presence of localized stress concentrations. Three particular problems
are considered. In two cases, the prestress configuration consists of a single, isolated
concentration of high shear stress on the fault plane. In both cases, the high-stress
patch is embedded in a lower regional stress field. The third case consists of an
array of five separate stress concentrations with intervening lower stress zones.
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The fault parameters used in the three simulations are given in Table 1. The
strength, 7., sliding friction 7/, and critical slip, do, are all held constant; only
variations of 7o are considered. The elastic properties, for all three simulations, are
a = 6.0 km/sec, B = 3.46 km/sec, and p = 3.24 X 10* MPa. In each case, rupture is
induced in a high-stress region centered at the origin. The fault then propagates in
the z=0 plane, and relieves the x, z stress component. In problems I and II, rupture
growth was permitted to stop spontaneously. In problem III, rupture growth
decelerated considerably as it progressed into the low-stressed region, but still
reached prespecified strength barriers which delimited a 6 km X 18 km rectangular
region.

Problem I. Figure 6 shows the geometry for problem I. The high-stress patch
(At = 10 MPa) is circular, with a radius of 1400 m. Outside this radius, the fault
plane is uniformly prestressed at the sliding friction level (At = 0).

Figure 7 shows rupture-front contours at 0.3-sec intervals of time. The rupture
accelerates rapidly over the prestressed patch, then abruptly decelerates as it breaks
into the zero stress-drop region. In the y direction, deceleration is very abrupt, and
the fault penetrates only about 150 m beyond the edge of the stress concentration.
In the x direction, however, the fault penetrates about 500 m into the low-stress
region. After 1.5 sec, rupture growth has ceased.

Figure 8 shows both peak slip velocity (low-passed, 5-Hz cutoff) and rupture
velocity along the x axis. Rupture velocity accelerates rapidly throughout the stress
concentration as we would predict on the basis of the uniform prestress solution.
The shear wave velocity is reached at a hypocentral distance of about 800 m, and
rupture velocity is then supershear until reaching the edge of the stress concentra-
tion. When the fault breaks into the lower stress region, rupture velocity drops
immediately to about 1 km/sec, and rupture growth finally stops spontaneously.
The gradual stopping of rupture in a region of zero dynamic stress drop is in
qualitative agreement with the predictions of Husseini et al. (1975), which were
based on an antiplane strain crack model. '

It is known, from the analytical results of Eshelby (1969), e.g., that crack edges
have no inertia, in the case of singular cracks. That is, rupture velocity responds
instantaneously to changes in driving stress. The rupture velocity drops abruptly in
our numerical solution as well, after rupturing through the stress concentration.
Thus, the finite stress numerical fault model exhibits a lack of inertia similar to that
predicted by classical fracture mechanics.

The rupture velocity given in Figure 8 is the local, or “tangent,” rupture velocity.
That is, it is obtained from the gradient of rupture arrival time. While the tangent
rupture velocity exceeds the shear velocity over a significant area of the fault, the
average, or “secant,” rupture velocity is always subshear in this problem. That is, at
any point along the x axis, the hypocentral distance divided by rupture arrival time
is less than S for this simulation. no

Peak slip velocity roughly parallels the shape of the rupture velocity curve in
Figure 8. The initial increase in peak slip velocity with hypocentral distance is
expected from our results for the uniform prestress problem. When the rupture
velocity decelerates after breaking through the stress concentration, the peak slip
velocity also decreases.

Problem II. This case, sketched in Figure 9, differs from the previous one only in
having a nonzero dynamic stress drop (Ar = 2.5 MPa) outside the area of stress
concentration (At = 10 MPa). Figure 10 shows rupture front contours for this case.
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Fault growth again stops spontaneously in this case. This spontaneous arrest of
rupture occurs in spite of the fact that the prestress everywhere exceeds dynamic
friction. As in the previous case, rupture growth decelerates outside the stress
concentration, but overshoots further into the lower stress region than was the case
in problem I. The overshoot distance is 600 m in the y direction and 1500 m in the
x direction, compared to the stress concentration radius of 1400 m.

Rupture velocity and peak slip velocity along the x axis are shown in Figure 11.
Local rupture velocity is supershear near the edge of the stress concentration,
peaking at about 4 km/sec, and drops abruptly to about 1 km/sec after breaking
through the stress concentration. It then recovers to about 1.7 km/sec before
smoothly decelerating to zero. Secant rupture velocity is everywhere subshear. The
peak slip velocity mirrors this behavior of the local rupture velocity, again demon-
strating the strong linkage between the two quantities.

Problem III. The problem geometry for this case is sketched in Figure 12. Each
of the five high-stress areas (At = 10 MPa) is square, with dimension 2250 m, and
they are symmetrically disposed about the hypocenter. The remainder of the plane

is low-stressed (Ar = 2.5 MPa), and each low-stress area between stress concentra-
tions is 1050 m in width.
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F16. 13. Rupture front contours obtained from the numerical solution to problem IIL. Rupture front
is shown at 0.1-sec intervals. Contours at 1.1 and 1.9 sec indicate that the rupture has “jumped,” with the

slipping surface becoming temporarily multiply connected. Fault growth beyond x = 9 km and y = 3 km
has been artificially inhibited by a strength barrier.

Figure 13 shows the rupture front contours at 0.1-sec intervals. A fairly complex
pattern of rupture emerges. Along the y axis, e.g., rupture stops shortly after 1 sec.
As rupture advances on the other parts of the fault plane, however, the stress
concentration along the y axis increases, causing rupture propagation to recommence
at about 1.8 sec. Along the x axis, rupture accelerates rapidly as it breaks each high-
stress patch, and decelerates between patches. At 1.1 sec, and then again at 1.9 sec,
the rupture front “jumps,” leaving unbroken areas behind, which subsequently
break.

Figure 14 shows the peak slip velocities and rupture velocities along the x axis,
The close relationship between maximum slip velocity and rupture velocity is
especially evident here. The dashed portions of the rupture velocity curve represent
regions that ruptured out of sequence as the rupture front jumped ahead to a high-

-stress patch.

We note that apparent local rupture velocities in excess of the P-wave velocity
occur at the edges of the stress concentrations. Of course, the secant rupture velocity
(hypocentral distance divided by rupture travel time) is everywhere less than the P-
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wave speed, as required by causality. On the other hand, the secant rupture velocity
does slightly exceed the S-wave velocity at some intermediate points along the x
axis. Over the entire fault length, however, the secant rupture velocity is slightly
subshear, equaling approximately 0.95 8.

This behavior is shown another way in Figure 15, which is a plot of distance
versus time of rupture along the x axis. The points labeled A and B in this figure
illustrate typical positions on the x axis at which tangent rupture velocity is
supershear while secant rupture velocity is subshear. At Point 4, e.g., the tangent
rupture velocity lies between the S- and P-wave velocities, while the secant rupture
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Fic. 14. Rupture velocity and peak slip velocity for problem III, as functions of position along the x
axis. Peak slip velocity is obtained from low-passed (5 Hz) time histories. Dashed parts of the rupture
velocity curve indicate regions which ruptured out of sequence. For example, rupture occurred at x = 5.6
km while the region between 5.0 and 5.6 km was still intact. The linkage between rupture velocity and
peak slip velocity is particularly evident in this figure. Note that it is “local” rupture velocity which is
plotted—i.e., the derivative of the rupture arrival time curve. Causality is not violated by those portions
of the curve which exceed the P-wave velocity.

velocity (Jr) is about 80 per cent of the S-wave velocity. At point B, the tangent
rupture velocity exceeds the P-wave velocity, while the secant rupture velocity is
just over 90 per cent of the S-wave velocity. _ :
The mean value of the dynamic stress drop over the entire 6 X 18 km fault in
problem I1I is about 4.2 MPa. We have defined S for the uniform stress case as the
ratio of the cohesive stress (r, — 7o) to the dynamic stress drop Ar; if we take the
ratio of spatial averages of these quantities for the nonuniform stresses of problem
111, we get a value of about 1.8. This value is considerably higher than the values for
S of 0.2 and 0.5 used in the uniform prestress simulations. As a result, the average
rupture velocity has been reduced from well above the shear wave speed for the
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uniform stress case to about 5 per cent below the shear wave speed for the
nonuniform prestress case. This result can be compared with the theoretical results
cited earlier which predict subshear rupture velocity when S exceeds 1.63. It is
interesting that the theoretical predictions, which were based on two-dimensional
formulations and uniform stress conditions, are in reasonable accord with the gross
average behavior of the three-dimensional, nonuniform stress model.

DiscussioNn

We have used a finite difference method to study crack propagation in a three-
dimensional continuum, for conditions of both uniform and nonuniform prestress,
The model of rupture which was employed satisfies two fundamental physical
requirements: it ensures finite stresses in the continuum, and it dissipates energy in
the course of crack extension. Furthermore, the rupture model agrees reasonably
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F16. 15. Distance versus time of rupture along the x axis, for problem III. Point A is a typical point
at which the local, or “tangent” rupture velocity vg exceeds the S-wave velocity, while the average, or
“secant” rupture velocity vz is subshear. Point B represents a point at which the tangent rupture velocity
exceeds the P-wave velocity. ’

well with available laboratory measurements of unstable slip events although scaling
of the model parameters to natural earthquakes presents large uncertainties.

In some respects, the behavior of our three-dimensional finite stress numerical
simulations resembles that predicted by two-dimensional singular-stress crack
models. We observe an abrupt jump in rupture velocity after rupture of a stress
concentration, for example, which agrees with the prediction of the singular theory
that crack edges lack inertia (Eshelby, 1969). When the dynamic stress drop outside
the stress concentration was increased from 0 (problem I) to 2.5 MPa (problem 1I),
the magnitude of the rupture velocity Jjump diminished slightly, but a finite jump
still occurred instantaneously (within the resolution of the numerical solution).

Also foreshadowed by classical fracture mechanics, at least qualitatively, is the
strong coupling which we find between rupture velocity and peak slip velocity for
the nonuniformly prestressed fault simulations. Analytic solutions (e.g., Freund,
1979) for the elastic field in the vicinity of a propagating crack-tip singularity give



1900 STEVEN M. DAY

a slip velocity singularity whose intensity is proportional to two factors. The first of
these is a functional of the whole rupture history of the crack, and can generally be
found only from numerical solutions similar to ours; the second factor, however,
increases monotonically with the instantaneous rupture velocity.

In other respects, the behavior of our finite stress numerical simulations is quite
different from the behavior of the singular models. An important result to emerge
from this and earlier theoretical studies of finite stress shear crack propagation (e.g.,
Burridge, 1973; Andrews, 1976b; Das and Aki, 1977, Burridge et al., 1979) is the
recognition that rupture velocities in excess of the shear wave velocity may be
possible when cohesive stresses are sufficiently low. In this study, we have estab-
lished the applicability of the earlier two-dimensional results to the three-dimen-
sional problem of mixed-mode shear crack propagation. Specifically, supershear
rupture velocity is predicted for low-cohesion cracks in directions for which mode II
(inplane) crack motion dominates, while subshear velocity is predicted for directions
of predominantly mode III (antiplane) crack motion. Das (1981) has obtained a
similar result using a different finite stress rupture criterion (the “critical stress
level” criterion) and a different numerical method (the boundary integral equation
method).

The theoretical work cited above has demonstrated that rupture velocity becomes
subshear if the cohesive stress is sufficiently high, i.e., if the dimensionless strength
parameter S defined in the text is less than about 1.6. The numerical results
presented here demonstrate that average rupture velocity can be reduced to the
subshear level by another mechanism as well—the introduction of stress hetero-
geneities. Furthermore, segments of a fault can rupture at supershear velocity while
the average rupture velocity remains subshear. The latter phenomenon was observed
in all three of the nonuniform prestress simulations studied.

The numerical results indicate that the possibility of supershear rupture velocity
in rock depends on how near the average prestress is to some “failure” stress (which
need not be identified with the laboratory strength as measured on small, homoge-
neous samples of intact rock). Thus, detailed study of rupture propagation velocity
and its spatial variability, for a given event, could provide important information on
the stress levels acting in the fault zone immediately prior to failure. Several studies
have inferred supershear rupture velocities for earthquakes (e.g., Kanamori, 1970;
Douglas et al., 1981). These results may be evidence for prestress levels relatively
close to failure. Supershear rupture velocities have also been reported for laboratory
stick-slip experiments (e.g., Wu et al., 1972; Johnson et al., 1973). In the laboratory
studies cited, stick slip was preceded by stable sliding; it may be that the occurrences
of supershear rupture velocity reflect a weakened state associated with this stable
sliding phase, rather than reflecting the static strength of the fault. On the other
hand, Das and Scholz (1981) have cited evidence from earthquake aftershock
occurrences, for several events, which suggests the presence of stress levels very
close to failure even off the plane of main shock faulting.

Most seismic studies of rupture velocity only estimate its average value. Thus, it
is possible that a rupture mechanism analogous to our problem III simulation occurs.
commonly in nature. That is, some fault segments in large earthquakes may rupture
at supershear velocities, even though most reported rupture velocity determinations
are less than the shear wave velocity (e.g., Geller, 1976). In fact, Wu and Kanamori
(1973) prefer such a mechanism for the 1965 Rat Island earthquake. They infer from
seismic surface wave observations that the event had an average rupture velocity of
4 km/sec. At the same time, their analysis of seismic body waves led to a multiple
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event interpretation; the inferred rupture velocities for the individual subevents
were in the range 5.1 to 6.7 km/sec, values approaching the P-wave velocity.
Actually, our numerical simulations show that even supersonic (greater than the P
velocity) rupture velocities may be physically admissible for individual subevents of
an earthquake, even though causality demands that its average rupture velocity be
subsonic.

Even the relatively simple prestress configurations studied here result in fairly
complex rupture histories. An important further step will be to examine their effect
on the radiated seismic signal. The radiated wave field can be synthesized using the
slip histories obtained from these numerical simulations, and this issue will be
considered in a subsequent study.
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